КОМБІНАТОРИКА ДОПОМОЖІТЬ БУДЬ ЛАСОЧК!!!1. Скільки існує перестановок літер a, c, f, m, p, r, t, x, якщо між літерами а та с мають стояти 1 літера або 3 літери?
Ответы
Ответ:
10200
Пошаговое объяснение:
Для вирішення цієї задачі розглянемо два випадки: коли між літерами "а" та "с" стоїть 1 літера і коли стоїть 3 літери.
1) Між "а" та "с" стоїть 1 літера:
У даному випадку ми можемо розмістити решту 7 літер (f, m, p, r, t, x) між "а" та "с" в 7! (факторіал 7) способів.
Також, ми можемо розмістити літери "а" та "с" на початку або в кінці слова, що дає нам 2 способи.
Отже, загальна кількість перестановок для цього випадку становить 2 * 7! = 10080.
2) Між "а" та "с" стоїть 3 літери:
У цьому випадку ми можемо розмістити решту 5 літер (f, m, p, r, t, x) між "а" та "с" в 5! (факторіал 5) способів.
Отже, загальна кількість перестановок для цього випадку становить 5! = 120.
Отже, загальна кількість перестановок буде 10080 + 120 = 10200.