Предмет: Геометрия,
автор: Ivanessssaaaaaaa
Кут між між площинами а і b дорівнює 60 ° точка а лежить у площині а знайдіть відстань від точки а до лінії перетину площин якщо відстань від точки а до площини B становить 6 сантиметрів
Ответы
Автор ответа:
0
Рішення:
Нехай точка А лежить у площині А, а точка B лежить на лінії перетину площин А і В.
Оскільки кут між площинами А і В дорівнює 60°, то відстань від точки А до площини В утворює з лінією перетину площин А і В кут в 30°.
За теоремою Піфагора, відстань від точки А до лінії перетину площин А і В дорівнює
√(6^2 + 3^2) = √45 = 3√5
Отже, відстань від точки А до лінії перетину площин А і В становить 3√5 сантиметрів.
Відповідь:
3√5 см
Нехай точка А лежить у площині А, а точка B лежить на лінії перетину площин А і В.
Оскільки кут між площинами А і В дорівнює 60°, то відстань від точки А до площини В утворює з лінією перетину площин А і В кут в 30°.
За теоремою Піфагора, відстань від точки А до лінії перетину площин А і В дорівнює
√(6^2 + 3^2) = √45 = 3√5
Отже, відстань від точки А до лінії перетину площин А і В становить 3√5 сантиметрів.
Відповідь:
3√5 см
Ivanessssaaaaaaa:
В мене немає такої відповіді.Є 2√3,3√3;√3;4√3;√2
Похожие вопросы
Предмет: Українська мова,
автор: oleh19910712
Предмет: Геометрия,
автор: vika9vasulivna
Предмет: Математика,
автор: uiradftre
Предмет: Алгебра,
автор: Helloma
Предмет: Биология,
автор: LediDi2008