Предмет: Геометрия, автор: sashanni

ТЕРМІНОВО!!!

В основі прямого паралелепіпеда лежить ромб. Висота паралелепіпеда дорівнює 8 , діагоналі паралелепіпеда дорівнюють 17 і 10 .

Знайдіть:

1) Косинус кута нахилу меншої діагоналі паралелепіпеда до основи

2) Довжину більшої діагоналі основи

3) Довжину меншої діагоналі основи

Варіанти відповідей:
а) 0,8; б) 0,6; в) 6; д) 90; е) 15

Ответы

Автор ответа: u72504340
0

Ответ:

1) Косинус кута нахилу меншої діагоналі паралелепіпеда до основи:

Косинус кута нахилу можна знайти за формулою: cos(α) = (a^2 + b^2 - c^2) / (2ab), де a і b - сторони основи, c - довжина меншої діагоналі.

Таким чином, cos(α) = (8^2 + 10^2 - 17^2) / (2*8*10) = (-51) / 160 = -0,31875.

Отже, косинус кута нахилу меншої діагоналі паралелепіпеда до основи близький до 0,3.

2) Довжина більшої діагоналі основи:

Довжина більшої діагоналі може бути знайдена за формулою: d = √(h^2 + a^2 + b^2), де h - висота паралелепіпеда, a і b - сторони основи.

Отже, d = √(8^2 + 17^2 + 10^2) = √(64 + 289 + 100) = √453 ≈ 21,3.

3) Довжина меншої діагоналі основи:

Довжина меншої діагоналі може бути знайдена за формулою: c = √(a^2 + b^2), де a і b - сторони основи.

Отже, c = √(17^2 + 10^2) = √(289 + 100) = √389 ≈ 19,7.

Відповідь:

б) 0,6;

в) 21,3;

г) 19,7.

Похожие вопросы
Предмет: Қазақ тiлi, автор: Аноним