Предмет: Геометрия, автор: khockra

Самостоятельная работа по геометрии. Даны точки А(0; -2), В(2,5; 3) и С(4; 6). Составьте уравнения прямых АВ и АС. Ответьте на вопрос: лежат ли точки А, В и С на одной прямой?

Ответы

Автор ответа: cupak8266
0

Ответ:

Для составления уравнений прямых АВ и АС, мы можем использовать формулу уравнения прямой в общем виде y = mx + b, где m - коэффициент наклона прямой, b - свободный член.

Уравнение прямой АВ:

Поскольку у нас есть две точки А(0, -2) и В(2,5; 3), мы можем найти значение коэффициента наклона:

m = (y2 - y1) / (x2 - x1)

= (3 - (-2)) / (2,5 - 0)

= 5 / 2,5

= 2

Теперь мы можем использовать одну из точек для подстановки значений и найти свободный член b. Давайте возьмём точку А(0, -2):

-2 = 2 * 0 + b

b = -2

Таким образом, уравнение прямой АВ будет выглядеть: y = 2x - 2.

Уравнение прямой АС:

Повторим те же шаги, чтобы найти коэффициент наклона и свободный член. Имеем точку А(0, -2) и С(4, 6):

m = (y2 - y1) / (x2 - x1)

= (6 - (-2)) / (4 - 0)

= 8 / 4

= 2

Подставим значения в уравнение:

-2 = 2 * 0 + b

b = -2

Таким образом, уравнение прямой АС будет выглядеть: y = 2x - 2.

Теперь, чтобы определить, лежат ли точки А, В и С на одной прямой, мы можем проверить, выполняются ли уравнения прямых АВ и АС одновременно. Подставим точку С(4, 6) в уравнение АВ:

6 = 2 * 4 - 2

6 = 8 - 2

6 = 6

Мы видим, что условие выполняется, поэтому все три точки А, В и С лежат на одной прямой.

Объяснение:

эт чат гпт, можно лучший ответ пеже

Похожие вопросы
Предмет: Алгебра, автор: koladavlad474
Предмет: Математика, автор: Wertyyyyyyyyyyyyyy