Хлопчик задумав число, збільшив його в дев'ять разів, потім відняв
найбільше трицифрове просте число, записав протилежне до нього та в результаті отримав -8 012. Яке число задумав хлопчик?
Ответы
Відповідь:
Покрокове пояснення:
Давайте позначимо число, яке хлопчик задумав, як
�
x. Тоді процес можна описати наступним чином:
Збільшив число в дев'ять разів:
9
�
9x
Відняв найбільше трицифрове просте число:
9
�
−
�
9x−P, де
�
P - найбільше трицифрове просте число.
Також, він записав протилежне число, тобто
−
1
−1 помножити на отримане число:
−
1
⋅
(
9
�
−
�
)
−1⋅(9x−P)
За умовою завдання, результат цих операцій дорівнює -8 012:
−
1
⋅
(
9
�
−
�
)
=
−
8012
−1⋅(9x−P)=−8012
Розглянемо, як можемо розв'язати це рівняння. Давайте розкриємо дужки та спростимо:
−
9
�
+
�
=
−
8012
−9x+P=−8012
Тепер можемо виразити
�
x:
�
=
�
−
8012
−
9
x=
−9
P−8012
Для знаходження правильного значення
�
x потрібно враховувати, що
�
P - найбільше трицифрове просте число.
Знайдемо найбільше трицифрове просте число: 999.
Підставимо
�
=
999
P=999 у рівняння:
�
=
999
−
8012
−
9
=
−
7013
−
9
=
779
x=
−9
999−8012
=
−9
−7013
=779
Отже, число, яке хлопчик задумав, дорівнює 779.