Предмет: Математика, автор: tatianaivanova2008sh

Одна сторона треугольника на 6 см больше другой, а угол между ними равен 120°. Найдите периметр треугольника, если его третья сторона равна 21 см.

Ответы

Автор ответа: 128e07h12678bd1oq
0

Ответ:

Периметр = x + (x + 6) + 21

Пошаговое объяснение:

Пусть x - длина меньшей стороны треугольника. Тогда длина большей стороны будет x + 6.

Сумма углов в треугольнике равна 180°. Учитывая, что угол между сторонами равен 120°, у нас есть два угла: 120° и два других угла, которые в сумме дают 60°.

Теперь мы можем использовать теорему косинусов для нахождения длин треугольника:

c^2 = a^2 + b^2 - 2ab * cos(C)

где:

- c - длина стороны, противолежащей углу C (в данном случае, третья сторона - 21 см),

- a и b - длины других двух сторон,

- C - угол между a и b.

Подставим известные значения:

21^2 = x^2 + (x + 6)^2 - 2x(x + 6) * cos(120°)

Решив уравнение, найдем значение x.

После нахождения x:

Большая сторона = x + 6

Периметр = x + (x + 6) + 21

Похожие вопросы
Предмет: История, автор: eva8028