Предмет: Геометрия, автор: lkoval844

Знайти рівняння кола,що проходить через точку M(4;2)і має центр C(3;-1).

Ответы

Автор ответа: m24500311
0

Ответ:

(x - h)^2 + (y - k)^2 = r^2

У даному випадку, центр кола C має координати (3, -1), а точка M має координати (4,2). Значить, ми маємо:

(x - 3)^2 + (y - (-1))^2 = r^2

Потрібно визначити радіус r. Для цього нам знадобиться використати координати центру та точки на колі. Відстань між цими точками рівна радіусу кола. Використаємо формулу відстані між двома точками:

r = √[(x2 - x1)^2 + (y2 - y1)^2]

Підставимо вирази для координат точок C(3,-1) і M(4,2) і отримаємо:

r = √[(4 - 3)^2 + (2 - (-1))^2]

= √[1^2 + 3^2]

= √[1 + 9]

= √10

Отже, радіус r дорівнює √10. Підставимо це значення у наше рівняння кола та отримаємо:

(x - 3)^2 + (y - (-1))^2 = (√10)^2

(x - 3)^2 + (y + 1)^2 = 10

Отримане рівняння (x - 3)^2 + (y + 1)^2 = 10 є рівнянням кола, що проходить через точку M(4,2) і має центр C(3,-1).

Похожие вопросы
Предмет: Алгебра, автор: fokib54
Предмет: Алгебра, автор: razeba33