Предмет: Алгебра, автор: Аноним

Будь -ласка дайте відповідь на 7 питання дам 60 балів

Приложения:

Ответы

Автор ответа: NNNLLL54
1

Ответ:

7)  Доказать, что значение выражения не зависит от значения переменной  m .

\bf \displaystyle \Big(\frac{m-4}{m+4}-\frac{m+4}{m-4}\Big):\frac{32m}{m^2-16}=\\\\\\=\frac{(m-4)^2-(m+4)^2}{(m-4)(m+4)}:\frac{32m}{(m-4)(m+4)}=\\\\\\=\frac{m^2-8m+16-m^2-8m-16}{(m-4)(m+4)}\cdot \frac{(m-4)(m+4)}{32m}=\\\\\\=\frac{-16m}{32m}=-\frac{1}{2}

Приложения:
Похожие вопросы
Предмет: Информатика, автор: Martinat