При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?
Ответы
Для решения данной задачи проще вычислить вероятность обратного события, т.е. найти вероятность не попадания в цель ни при одном выстреле, ни при двух выстрелах, ни при трех выстрелах и т.д. Вероятность не поражения цели при одном выстреле будет равна
Р1=1-0,4=0,6
при двух
Р2=(1-0,4)(1-0,6)=0,6*0,4=0,24
при трех
Р3=(1-0,4)(1-0,6)(1-0,6)= 0,6*0,4*0,4=0,096
при четырех
Р4=0,906*0,4=0,03624
при пяти
Р5=0,03624*0,4=0,014496
Зная вероятность не попадания в цель при заданном числе выстрелов Рn можно вычислить вероятность поражения цели как 1-Pn , где n - число выстрелов.
Найдем теперь число выстрелов, при котором вероятность попадания не менее 0,98, получим:
- при одном выстреле
P=1-0,6=0,4
- при двух выстрелах
P=1-0,24=0,76
- при трех выстрелах
P=1-0,096=0,904
-при четырех выстрелах
Р=1-0,03624=0,96376
-при пяти выстрелах
Р=1-0,014496=0,985504
Ответ: 5 выстрелов.