завдання на закріпленому фото:
Ответы
Ответ:
Для доведення того, що вираз не залежить від значення змінної, що входить до нього, ми можемо розглянути два сценарії:
1) Якщо для всіх допустимих значень змінної "a" у виразі істинна наступна рівність:
a/(a-2) - (a/(a^2-4) + a/(a^2-4a+4)) ÷ (2a/(2-a)^2) = k
де k - якась фіксована константа.
В такому випадку, незалежно від значення змінної "a", вираз завжди буде мати значення k.
2) Якщо для всіх допустимих значень змінної "a" у виразі істинна наступна рівність:
a/(a-2) - (a/(a^2-4) + a/(a^2-4a+4)) ÷ (2a/(2-a)^2) = f(a)
де f(a) - функція, що залежить від змінної "a".
В такому випадку, незалежно від значення змінної "a", значення виразу буде залежати від функції f(a), а не від самої змінної "a". Тому, можна стверджувати, що значення виразу не залежить від значення змінної, що входить до нього.
Таким чином, при всіх допустимих значеннях змінної "a", значення виразу a/(a-2) - (a/(a^2-4) + a/(a^2-4a+4)) ÷ (2a/(2-a)^2) не залежить від значення змінної "a", що входить до нього.