Предмет: Математика, автор: oksgol

Скласти канонічне рівняння еліпса, який проходить через точки А(3;0) і В(2;√5/3)

Ответы

Автор ответа: Аноним
1

Для складання канонічного рівняння еліпса, що проходить через точки А(3;0) і В (2;√5/3) , нам знадобляться наступні кроки:

Крок 1: Знайдіть центр еліпса.

Центр еліпса (h, k) можна знайти, використовуючи такі формули:

h = (x1 + x2) / 2

k = (y1 + y2) / 2

В даному випадку, A (3; 0) і B (2;√5/3), тому:

h = (3 + 2) / 2 = 5/2

k = (0 + √5/3) / 2 = √5/6

Центр еліпса буде дорівнює (5/2, √5/6).

Крок 2: Знайдіть Півосі еліпса.

Піввісь еліпса a і b можна знайти, використовуючи відстані від центру еліпса до точок А і В:

a = |x2 - x1| / 2

b = |y2 - y1| / 2

В даному випадку:

a = |2 - 3| / 2 = 1/2

b = |√5/3 - 0| / 2 = √5/6

Крок 3: Складіть канонічне рівняння еліпса.

Канонічне рівняння еліпса має наступний вигляд:

((x - h)^2 / a^2) + ((y - k)^2 / b^2) = 1

Підставимо значення, знайдені на попередніх кроках:

((x - 5/2)^2 / (1/2)^2) + ((y - √5/6)^2 / (√5/6)^2) = 1

Спростимо рівняння:

4(x - 5/2)^2 + 25(y - √5/6)^2 = 25

Таким чином, канонічне рівняння еліпса, що проходить через точки А (3; 0) і В (2;√5/3), буде:

4(x - 5/2)^2 + 25(y - √5/6)^2 = 25

Похожие вопросы
Предмет: Українська мова, автор: albinabarisevska
Предмет: Английский язык, автор: army201com
Предмет: Қазақ тiлi, автор: kilowatt35417