Предмет: Математика, автор: asotfilipavic7

Основою прямої призми є рівнобічна трапеція, менша основа якої дорівнює 8 см, а гострий кут 60º. Діагоналі трапеції є бісектрисами її гострих кутів. Знайдіть висоту призми, якщо діагональ призми утворює з площиною основи кут 30º

Ответы

Автор ответа: ivanfek011
0

Ответ:

Діагоналі рівнобічної трапеції є також її бісектрисами, тому всі її сторони рівні між собою. За властивостями рівнобічної трапеції, кути при основі трапеції є прямими кутами.

З наявної інформації ми можемо скласти прямокутний трикутник за допомогою половини діагоналі трапеції та її висоти. Половина діагоналі трапеції - це сторона прямокутного трикутника, висота призми - його катет, а висота рівнобічної трапеції - гіпотенуза.

Спочатку знайдемо довжину сторони рівнобічної трапеції за допомогою косинуса гострого кута:

cos(60°) = adjacent / hypotenuse

cos(60°) = 8 / x

x = 8 / cos(60°)

x = 16 см

Тепер ми можемо знайти висоту прями призми, використавши відомий радіус описаного кола. Радіус описаного кола рівний половині діагоналі рівнобічної трапеції,

r = 16 / 2 = 8 см

Далі знайдемо висоту призми за допомогою трикутника, що утворився:

h = r * sin(30°)

h = 8 * sin(30°)

h = 8 * 0.5

h = 4 см

Таким чином, висота призми становить 4 см.

Похожие вопросы
Предмет: Геометрия, автор: frogopetrickij