Предмет: Алгебра, автор: Vas800325

СРОЧНО!!! ДАЮ 80 балов
На фото

Приложения:

Ответы

Автор ответа: 7x8
1

Ответ:

\displaystyle -\frac{12}{25}\\\\\frac{12}{25}

Объяснение:

\displaystyle sin^2\alpha+cos^2\alpha=1\\\\\left(\frac{3}{5}\right)^2+cos^2\alpha=1\\\\\frac{9}{25}+cos^2x=1\\\\cos^2\alpha=1-\frac{9}{25}\\\\cos^2\alpha=\frac{16}{25}\\\\cos\alpha=-\sqrt{\frac{16}{25}}\\\\cos\alpha=-\frac{4}{5}\\\\\\sin2\alpha=2sin\alpha cos\alpha=\frac{3}{5}\cdot(-\frac{4}{5})=-\frac{12}{25}

------------------------

\displaystyle sin^2\alpha+cos^2\alpha=1\\\\sin^2\alpha+\left(-\frac{4}{5}\right)^2=1\\\\sin^2\alpha+\frac{16}{25}=1\\\\sin^2\alpha=1-\frac{16}{25}\\\\sin^2\alpha=\frac{9}{25}\\\\sin\alpha=-\sqrt\frac{9}{25}\\\\sin\alpha=-\frac{3}{5}\\\\\\sin2\alpha=2sin\alpha cos\alpha=-\frac{4}{5}\cdot(-\frac{3}{5})=\frac{12}{25}

Похожие вопросы
Предмет: Оʻzbek tili, автор: elyorsalimjonov555