Предмет: Математика, автор: pitsa84

точка A не лежит в плоскости параллелограмма MNPQ,а точка B-середина отрезка NA. Докажите,что плоскость MBQ пересекает прямую AP

Ответы

Автор ответа: litoninasofia
1

Ответ:

Для доказательства, что плоскость MBQ пересекает прямую(AP, рассмотрим следующие шаги:

1. Поскольку точка A не лежит в плоскости параллелограмма MNPQ, отрезок NA и плоскость MNPQ пересекаются в некоторой точке C.

2. Также, по условию, точка B является серединой отрезка NA.

3. Рассмотрим теперь треугольник MBC.Так как точка B является серединой отрезка NA, то по теореме о середине треугольника MBC отрезок BC параллелен отрезку NP (и равен ему вдвое).

4. Таким образом, прямая BC лежит в плоскости параллелограмма MNPQ.

5. Поскольку прямая BC лежит в плоскости параллелограмма MNPQ и проходит через точку B, а прямая AP проходит через точку A, то эти две прямые пересекаются в некоторой точке, которую обозначим D.

6. Таким образом, прямая AP пересекается с плоскостью MBQ в точке D.

Таким образом, мы доказали, что прямая AP пересекает плоскость MBQ.

Пошаговое объяснение:

можно лучший ответ

Похожие вопросы
Предмет: Математика, автор: qwwwen
Предмет: Биология, автор: qwinnxxw1
Предмет: Русский язык, автор: birka3452