Предмет: Алгебра, автор: syzdykovalzar

докажите что сумма углов выпуклого n-угольника равна (n-2) * 180 градусов , а для четырехугольника __(4-2)* 180 градусов = 360 градусов (Решается алгебраическим способом )

Приложения:

Ответы

Автор ответа: Plutonium1001
1

Ответ:

Пусть ABCD - выпуклый n-угольник. Рассмотрим любую диагональ, например, BD. Она разбивает n-угольник на два треугольника, ABD и CBD. Сумма углов треугольника равна 180 градусам. Значит, сумма углов ABCD равна сумме углов ABD и CBD, то есть

i=1∑n∠Ai=180(A+B)

где A и B - углы, образованные диагональю BD с остальными сторонами ABCD.

Так как ABCD - выпуклый четырехугольник, то A и B меньше 180 градусов. Значит,

i=1∑n∠Ai≤180(180−180)=180(0)=0

С другой стороны, сумма углов выпуклого многоугольника всегда больше или равна 180(n−2). Значит,

i=1∑n∠Ai≥180(n−2)

Из этих двух неравенств следует, что

0≤i=1∑n∠Ai≤180(n−2)

Единственный способ, при котором это неравенство выполняется при всех значениях n, - это когда равенство выполняется при всех значениях n. Значит,

i=1∑n∠Ai=180(n−2)

В частности, для четырехугольника n=4, поэтому

i=1∑4∠Ai=180(4−2)=360

Автор ответа: rizagul537
0

Объяснение:

если не правильно тогда сори

Приложения:
Похожие вопросы
Предмет: Литература, автор: karinamahanko1
Предмет: Алгебра, автор: saipjan2004