Предмет: Геометрия,
автор: vanasinuk545
доведіть що площу ромба S сторону якого дорівнює а, а один з кутів а модна знайти за формолую S a2sina
Ответы
Автор ответа:
0
Ответ: Для того, щоб довести, що площу ромба S, сторону якого дорівнює a, а один з кутів α, можна знайти за формулою S = a² sin α, можна скористатися наступним розв’язанням:
Проведемо висоту h ромба, опущену на сторону a.
За означенням ромба, всі його сторони рівні, тому AB = BC = CD = DA = a.
За властивістю ромба, його діагоналі перпендикулярні, тому ∠ADB = ∠CDB = 90°.
За властивістю ромба, його діагоналі ділять кути ромба навпіл, тому ∠BAD = ∠BCD = α/2.
З трикутника ADB маємо: h = AD sin BAD = a sin (α/2).
За формулою площі трикутника маємо: S ADB = 1/2 a h = 1/2 a² sin (α/2).
Оскільки S ABCD = 2 S ADB, то S ABCD = a² sin (α/2).
За формулою подвійного кута маємо: sin (α/2) = 2 sin (α/2) cos (α/2) = sin α.
Отже, S ABCD = a² sin α.
Хороших Оцінок)
Похожие вопросы
Предмет: Химия,
автор: tagaevad35
Предмет: Українська мова,
автор: naovlcsu
Предмет: Українська мова,
автор: Аноним
Предмет: Русский язык,
автор: hakimovsascha
Предмет: Английский язык,
автор: rakhimjanov04