Скільки часу тривало гальмування автомобіля, який їхав зі швидкістю 90км/год по горизонталій ділянці шляху, якщо відомо що маса автомобіля 1,5т а коефіцієнт тертя становить 0,5
Ответы
Відповідь:
Для знаходження часу гальмування автомобіля, ви можете використовувати другий закон Ньютона, який говорить, що сила, що діє на об'єкт, дорівнює масі об'єкта помножити на прискорення. У вашому випадку, автомобіль рухається по горизонталійній ділянці шляху зі швидкістю 90 км/год, і ви хочете зупинити його.
1. Перетворіть швидкість на метри за секунду (км/год в м/с):
90 км/год = 25 м/с (близько)
2. Знайдіть прискорення, використовуючи другий закон Ньютона:
F = m * a, де F - сила (сила тертя), m - маса автомобіля, a - прискорення.
Сила тертя = коефіцієнт тертя * нормальна сила.
Нормальна сила = маса * прискорення вільного падіння (g).
Сила тертя = 0.5 * (1.5 т * 1000 кг/т) * (9.8 м/с²)
Сила тертя = 7350 Н (ньютонів)
Тепер, ми можемо визначити прискорення:
7350 Н = (1.5 т * 1000 кг/т) * a
a = 7350 Н / (1.5 т * 1000 кг/т) = 4.9 м/с²
3. Зараз ми можемо знайти час гальмування, використовуючи рівняння руху:
v = u + at, де v - кінцева швидкість (0 м/с, оскільки автомобіль зупиняється), u - початкова швидкість (25 м/с), a - прискорення, t - час.
0 м/с = 25 м/с + 4.9 м/с² * t
4.9 м/с² * t = -25 м/с
t = (-25 м/с) / 4.9 м/с² ≈ -5.1 секунд
Отже, час гальмування автомобіля приблизно дорівнює 5.1 секунди. Будьте уважні, що час може бути негативним, оскільки автомобіль рухається назад.
Пояснення: