Предмет: Алгебра,
автор: Аноним
Знайти найбільший цілий розв'язок нерівності:
1) (x + 17)(x - 17) < x ^ 2 - 17x
2) x(x - 6) - x ^ 2 >= 4x + 4
(розписати детальніше)
Ответы
Автор ответа:
1
Ответ и Объяснение:
Требуется найти наибольшее целое решение неравенства.
Формула сокращённого умножения: (a-b)·(a+b) = a²-b².
Решение. Раскроем скобки и упростим неравенства, а потом решим.
1) (x + 17)·(x - 17) < x² - 17·x
x² - 17² < x² - 17·x
17·x < 17² |: 17
x < 17.
Отсюда наибольшее целое решение неравенства равно 16.
2) x·(x - 6) - x² ≥ 4·x + 4
x² - 6·x - x² ≥ 4·x + 4
-4 ≥ 4·x + 6·x
10·x ≤ -4 |: 10
x ≤ -0,4.
Значит, наибольшее целое решение неравенства равно -1.
#SPJ1
alekskolenin:
Брат выручил
Похожие вопросы
Предмет: Английский язык,
автор: oleskoviktoria85
Предмет: Українська мова,
автор: iplo1892
Предмет: География,
автор: romaperederij82
Предмет: Биология,
автор: altusikzhanas
Предмет: Алгебра,
автор: zumagulovagauhar6