Предмет: Геометрия,
автор: imomnazarua
Знайти меншу діагональ правильного шестикутника, якщо більша його діагональ дорівнює 2/3 см.
Ivan19074:
А там не все диагонали одинаковые?
Ответы
Автор ответа:
0
Ответ:
Объяснение:
Дано:
ABCDEF - правильный шестиугольник
AD = 2/3 (см)
___________
АС - ?см
1) Все углы правильного шестиугольника равны между собой
∠А = ∠В = ... = ∠D = (n-2)*180)/n = (6 - 2)*180°/6 = 120°
2) Вокруг правильного шестиугольника можно описать окружность, и притом только одну. Радиус описанной окружности является биссектрисой угла правильного шестиугольника, т.е
∠CDA = ∠EDA = 120°/2 = 60°
3) ∠ACD = 90°, т.к. он является вписанным и опирается на диаметр окружности.
Следовательно, ΔACD - прямоугольный.
АС = AD*sin∠CDA = AD * sin60° = ²/₃ * √3/2 = √3/3
AC = √3/3 (см)
Приложения:
Похожие вопросы
Предмет: Английский язык,
автор: ulianakovachuk
Предмет: Українська мова,
автор: chernysov2009
Предмет: Математика,
автор: anisovaanel21
Предмет: Математика,
автор: palamarcukaljona2610
Предмет: Қазақ тiлi,
автор: flejklubithgfhgfhfgh