Предмет: Алгебра, автор: borohdima12

Дуже потрібно!!!
6 и 7 завдання

Приложения:

tim1M: попахивает оккультизмом

Ответы

Автор ответа: Universalka
1

\displaystyle\bf\\6)\\\\\Big(\frac{1}{x^{\frac{1}{2} } } -x^{\frac{1}{2} } \Big)\Big(\frac{x^{\frac{1}{2} } -1}{x^{\frac{1}{2} }+1 } -\frac{x^{\frac{1}{2} } +1}{x^{\frac{1}{2} }-1 } \Big)=\\\\\\=\frac{1-x^{\frac{1}{2} } \cdot x^{\frac{1}{2} } }{x^{\frac{1}{2} } } \cdot\frac{(x^{\frac{1}{2} }-1)\cdot(x^{\frac{1}{2} } -1)-(x^{\frac{1}{2} }  +1)\cdot(x^{\frac{1}{2} } +1)}{(x^{\frac{1}{2} } +1)\cdot(x^{\frac{1}{2} } -1)} =

\displaystyle\bf\\=\frac{1-(x^{\frac{1}{2} } )^{2} }{x^{\frac{1}{2} } } \cdot\frac{(x^{\frac{1}{2} } )^{2} -2x^{\frac{1}{2} } +1-(x^{\frac{1}{2} } )^{2} -2x^{\frac{1}{2} } -1}{(x^{\frac{1}{2} } )^{2} -1} =\\\\\\=\frac{1-x}{x^{\frac{1}{2} } } \cdot \frac{-4x^{\frac{1}{2} } }{x-1} =\frac{1-x}{x^{\frac{1}{2} } } \cdot \frac{4x^{\frac{1}{2} } }{1-x} =4\\\\\\Otvet \ : \ 4

\displaystyle\bf\\7)\\\\ODZ \ : \\\\\left \{ {{x+21\geq 0} \atop {x-3\geq 0}} \right.  \  \  \ \Rightarrow \  \  \ \left \{ {{x\geq -21} \atop {x\geq 3} \right.  \  \  \ \Rightarrow \  \  \ \boxed{x\geq 3}\\\\\\\sqrt{x+21} +\sqrt{x-3} =6\\\\\\\sqrt{x+21} =6-\sqrt{x-3} \\\\\\(\sqrt{x+21})^{2}  =(6-\sqrt{x-3} )^{2} \\\\\\x+21=36-12\sqrt{x-3} +x-3\\\\\\x+12\sqrt{x-3} -x=33-21\\\\\\12\sqrt{x-3} =12\\\\\\\sqrt{x-3} =1\\\\\\x-3=1\\\\\\x=4\\\\\\Otvet \ : \ 4


borohdima12: Дуже дякую
Похожие вопросы
Предмет: Геометрия, автор: y6jyym7vzm
Предмет: ОБЖ, автор: saeyltn