Предмет: Алгебра,
автор: krolik0877
В паралелограмі ABCD сторони АВ і ВС дорівнюють 4 і 7 відповідно. Бісектриси АК і ВМ кутів паралелограма перетинаються в точці О (точки К і М лежать на сторонах ВС і АО відповідно). У скільки разів площа пʼятикутника OKCDM більше за площу трикутника ОАВ?
Ответы
Автор ответа:
0
Площа п'ятикутника OKCDM дорівнює сумі площ двох трикутників: OKC і DMC. Для того, щоб знайти цю площу, нам спочатку потрібно знайти площі цих трикутників.
Трикутник OKC - це наполовину відрізаний трикутник ОАВ за бісектрисою АК. Таким чином, площа трикутника OKC дорівнює половині площі трикутника ОАВ.
Трикутник DMC - це наполовину відрізаний трикутник ВСD за бісектрисою ВМ. Таким чином, площа трикутника DMC дорівнює половині площі трикутника ВСD.
Тепер ми можемо обчислити відповідні площі:
Площа трикутника OKC = 0.5 * Площа трикутника ОАВ
Площа трикутника DMC = 0.5 * Площа трикутника ВСD
Тепер порівняємо площу п'ятикутника OKCDM та площу трикутника ОАВ:
Площа п'ятикутника OKCDM = Площа трикутника OKC + Площа трикутника DMC
Площа п'ятикутника OKCDM = (0.5 * Площа трикутника ОАВ) + (0.5 * Площа трикутника ВСD)
Площа п'ятикутника OKCDM = 0.5 * (Площа трикутника ОАВ + Площа трикутника ВСD)
Таким чином, площа п'ятикутника OKCDM дорівнює половині суми площ трикутника ОАВ і трикутника ВСD.
А площа трикутника ОАВ відома, вона дорівнює половині добутку сторін AO і AB.
А площа трикутника ВСD також відома, оскільки сторони ВС та CD паралельні, і відношення довжин сторін ВС і АВ відомо.
Таким чином, ви можете розрахувати площу п'ятикутника OKCDM і порівняти її з площею трикутника ОАВ для знаходження, у скільки разів одна площа більша за іншу).
Трикутник OKC - це наполовину відрізаний трикутник ОАВ за бісектрисою АК. Таким чином, площа трикутника OKC дорівнює половині площі трикутника ОАВ.
Трикутник DMC - це наполовину відрізаний трикутник ВСD за бісектрисою ВМ. Таким чином, площа трикутника DMC дорівнює половині площі трикутника ВСD.
Тепер ми можемо обчислити відповідні площі:
Площа трикутника OKC = 0.5 * Площа трикутника ОАВ
Площа трикутника DMC = 0.5 * Площа трикутника ВСD
Тепер порівняємо площу п'ятикутника OKCDM та площу трикутника ОАВ:
Площа п'ятикутника OKCDM = Площа трикутника OKC + Площа трикутника DMC
Площа п'ятикутника OKCDM = (0.5 * Площа трикутника ОАВ) + (0.5 * Площа трикутника ВСD)
Площа п'ятикутника OKCDM = 0.5 * (Площа трикутника ОАВ + Площа трикутника ВСD)
Таким чином, площа п'ятикутника OKCDM дорівнює половині суми площ трикутника ОАВ і трикутника ВСD.
А площа трикутника ОАВ відома, вона дорівнює половині добутку сторін AO і AB.
А площа трикутника ВСD також відома, оскільки сторони ВС та CD паралельні, і відношення довжин сторін ВС і АВ відомо.
Таким чином, ви можете розрахувати площу п'ятикутника OKCDM і порівняти її з площею трикутника ОАВ для знаходження, у скільки разів одна площа більша за іншу).
Похожие вопросы
Предмет: Химия,
автор: s7096848
Предмет: Алгебра,
автор: belonsmaha
Предмет: География,
автор: Johnso
Предмет: Математика,
автор: dan4ik1093