Предмет: Геометрия, автор: jazkax09

Найдите расстояние между точками A(-4;5) и B(1;-7).​

Ответы

Автор ответа: alizakharv
0

Ответ:

Для нахождения расстояния между двумя точками в двумерном пространстве (в данном случае между точками A(-4;5) и B(1;-7)), вы можете использовать теорему Пифагора. Расстояние \(d\) между этими двумя точками будет равно гипотенузе прямоугольного треугольника, катеты которого равны разнице между соответствующими координатами.

Расстояние \(d\) вычисляется следующим образом:

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}\]

Где \((x_1, y_1)\) - координаты точки A, а \((x_2, y_2)\) - координаты точки B.

В вашем случае:

\((x_1, y_1) = (-4, 5)\) и \((x_2, y_2) = (1, -7)\)

Теперь подставьте значения в формулу:

\[d = \sqrt{(1 - (-4))^2 + (-7 - 5)^2} = \sqrt{(5)^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13\]

Итак, расстояние между точками A и B равно 13 единицам длины (в данном случае, возможно, в единицах, определенных в контексте задачи, например, в единицах длины).

Похожие вопросы
Предмет: Математика, автор: henetaetae
Предмет: Математика, автор: ayfdsf