Предмет: Геометрия, автор: makspu0101

На площині задано криву другого поряку. Знайти канонічне та загальне рівняння цієї кривої, визначити її основні характеристики та зробити відповідні креслення.
(a) x ^ 2 - 4x - 11 + y ^ 2 + 2y = 0

(b) 16x ^ 2 - 64x + 25y ^ 2 + 150y - 111 = 0

(c) - 25x ^ 2 - 50x + 144y ^ 2 - 576y - 3049 = 0

(d) x - 15 - 4y ^ 2 + 16y = 0

Ответы

Автор ответа: DmitryConnoisseur1
0

Ответ:

(a) x^2 - 4x - 11 + y^2 + 2y = 0

Перетворимо це рівняння, додавши та віднімаючи константи:

x^2 - 4x + 4 - 11 + y^2 + 2y + 1 = 4 - 11 + 1

(x^2 - 4x + 4) + (y^2 + 2y + 1) = -6 + 4 + 1

(x - 2)^2 + (y + 1)^2 = -1

Оскільки сума квадратів не може бути від'ємною, це рівняння не має розв'язків на площині.

(b) 16x^2 - 64x + 25y^2 + 150y - 111 = 0

16x^2 - 64x + 25y^2 + 150y + 111 - 111 = 0

(16x^2 - 64x + 25) + (25y^2 + 150y + 111) = 111

16(x^2 - 4x + 25/16) + 25(y^2 + 6y + 111/25) = 111

16(x^2 - 4x + 25/16) + 25(y^2 + 6y + 111/25) = 111 + 16 + 25

16(x^2 - 4x + 25/16) + 25(y^2 + 6y + 111/25) = 152

16(x - 2)^2 + 25(y + 3)^2 = 152

(c) -25x^2 - 50x + 144y^2 - 576y - 3049 = 0

-25x^2 - 50x + 144y^2 - 576y + 3049 - 3049 = 0

(-25x^2 - 50x + 25^2) + (144y^2 - 576y + 24^2) = 3049 - 3049 + 25^2 + 24^2

-25(x^2 + 2x + 25) + 144(y^2 - 4y + 24) = 625 + 576

-25(x + 5)^2 + 144(y - 2)^2 = 1201

(d) x - 15 - 4y^2 + 16y = 0

x - 15 - 4y^2 + 16y = 0

x + 16y - 15 - 4y^2 = 0

x + 16y - 15 - 4(y^2 - 4y) = 0

x + 16y - 15 - 4(y^2 - 4y + 4 - 4) = 0

x + 16y - 15 - 4((y - 2)^2 - 4) = 0

x + 16y - 15 - 4(y - 2)^2 + 16 = 0

x - 4(y - 2)^2 + 16y - 15 + 16 = 0

x - 4(y - 2)^2 + 16y + 1 = 0

Похожие вопросы
Предмет: Математика, автор: davka1337228
Предмет: Немецкий язык, автор: 675476765