Предмет: Геометрия, автор: Аноним

Высота SO правильной треугольной пирамиды SABC составляет frac{5}{7} от высоты SM боковой грани SAB. Найдите угол между плоскотью основания пирамиды и её боковым ребром.

Мне важен рисунок + решение.
Поэтому и даю 50 баллов. Спасибо

P.S. Поймите, я не хочу "списать", я больше всего хочу - понять! Помогайте :)

Ответы

Автор ответа: dnepr1
0
Чтобы понять, надо самому начертить пирамиду, в основании провести высоты (они же и биссектрисы и медианы). Высота пирамиды Н должна попасть в точку пересечения медиан. Отрезки медиан делятся в отношении 1:2. На боковой грани провести апофему А (это высота).
Отношение Н/А = 5/7 - это синус угла наклона боковой грани к основе, второй катет этого треугольника равен ОВ = √(7²-5²) = √(49-25) =√24=2√6 - это в тех же единицах, что и Н и А (относительных).
Боковое ребро SB как гипотенуза входит в прямоугольный треугольник с Н и частью медианы основы, равной 2*ОВ = 4√6. Тогда
 SB=√(5²+(4√6)²) = √(25+96)=√121 = 11.
Отсюда угол наклона бокового ребра к плоскоcти основания пирамиды равен arc sin 5/11 = 27,0357°




Приложения:
Автор ответа: Аноним
0
Отлично, благодарю! ( с меня "лучший ответ" как только будет доступно )
Похожие вопросы
Предмет: Русский язык, автор: Аноним