Предмет: Алгебра, автор: y8ol468

‼️‼️Допоможіть зробити даю 40 балів будь ласка срочно ‼️‼️

Приложения:

Ответы

Автор ответа: sstavridka
1

Ответ:

 \frac{22 + 11a}{45 - 9a}  =  \frac{11(2 + a)}{9(5 - a)}

 \frac{1}{x + 6}  -  \frac{x}{x - 4}  =  \frac{x - 4 -  {x}^{2}  - 6}{(x + 6)(x - 4)}  =  \frac{ -  {x}^{2}  + x - 10 }{ {x}^{2} - 2x - 24 }

 \frac{ {p}^{2}  - 81}{3p + 27}  =  \frac{(p - 9)(p + 9)}{3(p + 9)}  =  \frac{p - 9}{3}  =  \frac{p}{3}  - 3

 \frac{ {a}^{2} - 49 }{ {a}^{2} + 14a + 49 }  =  \frac{(a - 7)(a + 7)}{ {(a + 7)}^{2} }  =  \frac{a - 7}{a + 7}

 \frac{8b - 40c}{3b - 15c}  =  \frac{8(b - 5c)}{3(b - 5c)}  =  \frac{8}{3}  = 2 \frac{2}{3}

 \frac{x - y}{3y - 3x}  =  \frac{x - y}{3(y - x)}  =  -  \frac{1}{3}

 \frac{4}{a - 2}  +  \frac{3a + 2}{ {a}^{2}  - 2a}  =  \frac{4 }{a - 2}  +  \frac{3a + 2}{a(a - 2)}  =  \frac{4a + 3a + 2}{a(a - 2)}  =  \frac{7a + 2}{a(a - 2)}

 \frac{a + 5}{a - 5}  +  \frac{20a}{25 -  {a}^{2} }  =  \frac{a + 5}{a - 5}  +  \frac{20a}{(5 - a)(5 + a)}  =  \frac{ -  {(a + 5)}^{2} + 20a }{25 -  {a}^{2} }  =  \frac{ -  {a}^{2}  - 10a - 25 + 20a}{ 25 -  {a}^{2}}  =  \frac{ -  {a}^{2} + 10a - 25 }{25 -  {a}^{2} }  =  \frac{ {(a - 5)}^{2} }{(a - 5)(5 + a)}  =  \frac{a - 5}{5 + a}

 \frac{6a}{a - 7}  -  \frac{21}{a + 7}  +  \frac{6 {a}^{2} }{49 -  {a}^{2} }  =  \frac{6a(a + 7) - 21(a - 7) - 6 {a}^{2} }{(a - 7)(a + 7)}  =  \frac{21(9 - a)}{ {a}^{2}  - 49}

 \frac{3b - 1}{6b + 2}  -  \frac{6b}{1 - 9 {b}^{2} }  -  \frac{3b + 1}{9b - 3}  =  \\  =  \frac{3b - 1}{2(3b + 1)}   +   \frac{6b}{(3b - 1)(1 + 3b)}  -  \frac{3b + 1}{3(3b - 1)}  =  \\  =  \frac{3 {(3b - 1)}^{2} + 36b - 2 {(3b + 1)}^{2}  }{6(3b - 1)(3b + 1)}  =  \\  =  \frac{27{b}^{2}  - 18b + 3 + 36b - 18 {b}^{2}  - 12b - 2}{6(3b - 1)(3b + 1)}  =  \\  =  \frac{9 {b}^{2} + 6b + 1 }{6(3b - 1)(3b + 1)}  =  \\  =   \frac{3b + 1}{6(3b - 1)}

Похожие вопросы
Предмет: Математика, автор: yuliafedkovna