Знайти радіус кола, вписаного у рівнобедрений трикутник, периметр якого 128 см. Відомо, що його бічна сторона відноситься до основи, як 5:6. Записати розв'язання.
помогите пожалуйста это срочно даю 40 б
Ответы
Ответ:
Давайте позначимо сторони рівнобедреного трикутника так:
- Бічна сторона, яка відноситься до основи, буде 5x.
- Основа буде 6x.
- Інша бічна сторона також буде 5x (оскільки це рівнобедрений трикутник).
За задачею відомо, що периметр трикутника дорівнює 128 см. Тобто, сума всіх трьох сторін дорівнює 128 см:
\[5x + 6x + 5x = 128\]
Розв'яжемо це рівняння для знаходження значення x:
\[16x = 128\]
\[x = \frac{128}{16}\]
\[x = 8\]
Тепер, коли ми знайшли значення x, можемо знайти сторони трикутника:
- Бічна сторона, яка відноситься до основи: 5x = 5 * 8 = 40 см.
- Основа: 6x = 6 * 8 = 48 см.
- Інша бічна сторона: 5x = 5 * 8 = 40 см.
Знаючи сторони трикутника, можна знайти радіус кола, вписаного в трикутник, за допомогою півпериметра (s) і площі трикутника (S):
\[s = \frac{40 + 48 + 40}{2} = 64\]
Площа трикутника (S) може бути знайдена за допомогою формули Герона:
\[S = \sqrt{s(s-40)(s-48)(s-40)}\]
Після знаходження площі трикутника можемо знайти радіус вписаного кола (r) за допомогою наступної формули:
\[r = \frac{S}{s}\]
Після підрахунку ви отримаєте значення радіуса кола, вписаного в рівнобедрений трикутник.