Предмет: Алгебра, автор: abrrr

Доказать тождество: cos^6a+sin^6a=1/8(5+3cos4a)

Ответы

Автор ответа: Гоша68
0

cos^6a+sin^6a=(cos^2a+sin^2a)*(cos^4a+sin^4a-cos^2asin^2a)=

=(cos^2a-sin^2a)^2+cos^2asin^2a=(cos2a)^2+1/4(sin2a)^2=

=cos4a+5/4sin^2(2a)=cos4a+5/4(1/2(1-cos4a))=cos4a+5/8-5/8cos4a=

=1/8(5+3cos4a)

 

Похожие вопросы
Предмет: Алгебра, автор: angelinkamandarinka8