Предмет: Математика, автор: serikdias727

Для всех чисел X выполняется равенство (px +r)(x+5)=x2+3x+T.

Чему равна сумма целых чисел р, r, t?

Ответы

Автор ответа: axatar
2

Ответ:

Сумма целых чисел р, r, t равна -11

Пошаговое объяснение:

Информация. Многочлены равны тогда, когда их коэффициенты при одинаковых степенях равны.

По условию для всех чисел x∈R выполняется равенство

(p·x+r)·(x+5) = x²+3·x+t.

Раскроем скобки

p·x²+5·p·x+r·x+5·r = x²+3·x+t

p·x²+(5·p+r)·x+5·r = x²+3·x+t.

Приравниваем коэффициенты при одинаковых степенях:

при x²: p = 1

при x: 5·p+r = 3

при свободном члене: 5·r = t

Из первого уравнения имеем p = 1.

Из второго уравнения, подставив значение p = 1, найдём:

5·1+r = 3 ⇒ r = -2.

Из третьего уравнения, подставив значение r = -2, найдём:

t = 5·(-2) = -10.

Сумма целых чисел р, r, t равна 1-2-10 = -11

#SPJ1

Похожие вопросы
Предмет: Математика, автор: kuctatana598