Предмет: Алгебра, автор: bogdan09gi

(4 балла) Найдите первые три слагаемых в биномиальном разложении при возрастании степени z и запишите коэффициент при z: (2-z)​

Ответы

Автор ответа: glovsyannikov
0

Для нахождения первых трех слагаемых в биномиальном разложении выражения (2 - z)^n, где n - некоторая натуральная степень, можно воспользоваться биномиальной формулой:

(2 - z)^n = C(n, 0)(2^n)(-z)^0 + C(n, 1)(2^(n-1))(-z)^1 + C(n, 2)(2^(n-2))(-z)^2 + ...

где C(n, k) - биномиальный коэффициент, равный n! / (k!(n-k)!).

В данном случае, мы хотим найти первые три слагаемых, поэтому k будет равно 0, 1 и 2.

Первое слагаемое (k = 0):

C(n, 0) = 1

(2 - z)^n = 1 * (2^n) * (-z)^0 = 2^n

Второе слагаемое (k = 1):

C(n, 1) = n

(2 - z)^n = n * (2^(n-1)) * (-z)^1 = -nz * 2^(n-1)

Третье слагаемое (k = 2):

C(n, 2) = n(n-1)/2

(2 - z)^n = (n(n-1)/2) * (2^(n-2)) * (-z)^2 = (n(n-1)/2) * z^2 * 2^(n-2)

Теперь у нас есть первые три слагаемых в биномиальном разложении (2 - z)^n, и мы можем записать их:

2^n

-nz * 2^(n-1)

(n(n-1)/2) * z^2 * 2^(n-2)

Заметьте, что коэффициент при z в каждом из слагаемых различен.

Похожие вопросы
Предмет: Химия, автор: lizardman1077
Предмет: Математика, автор: anovi2018
Предмет: Математика, автор: lolitamazalova3