Задание 2 (5 баллов)
Две электрички, длинной L = 0,2 км каждая, движутся навстречу друг другу по параллельным железнодорожным путям.
Скорость электричек
отличается на 40 = 40 км/ч. Расстояние между точками встреч первых и последних вагонов равно d=40м. Определить скорости электричек (км/ч).
Ответы
Ответ:
Для решения данной задачи, воспользуемся формулой для расстояния, скорости и времени:
расстояние = скорость × время
У нас есть две электрички, движущиеся навстречу друг другу. Пусть V1 - скорость первой электрички, V2 - скорость второй электрички.
Так как электрички движутся навстречу друг другу, то их скорости нужно суммировать:
V1 + V2 = суммарная скорость движения электричек
Из условия задачи, известно, что разница в скоростях электричек составляет 40 км/ч:
V1 - V2 = 40 км/ч
Теперь рассмотрим движение первой электрички. Расстояние между точками встреч первых и последних вагонов равно d = 40 м. Длина первой электрички L = 0,2 км.
Тогда время, за которое первая электричка проходит расстояние d, можно выразить следующим образом:
время1 = d / L
Аналогично, для второй электрички:
время2 = d / L
Так как время1 и время2 - это одно и то же время, то можно записать:
d / L = d / L
Теперь можем выразить время через скорость и расстояние:
время1 = d / (V1 + V2)
время2 = d / (V1 - V2)
Теперь мы можем составить систему уравнений:
d / (V1 + V2) = d / L
d / (V1 - V2) = d / L
Упростим эти уравнения:
1 / (V1 + V2) = 1 / L
1 / (V1 - V2) = 1 / L
Теперь можем выразить скорости электричек:
V1 + V2 = L
V1 - V2 = L/40
Решим данную систему уравнений:
V1 = (L + L/40) / 2
V2 = (L - L/40) / 2
Подставим значения:
V1 = (0,2 + 0,2/40) / 2 = 0,201 км/ч
V2 = (0,2 - 0,2/40) / 2 = 0,199 км/ч
Итак, скорость первой электрички составляет 0,201 км/ч, а скорость второй электрички составляет 0,199 км/ч.