Предмет: Математика, автор: lubovmukutchyk

1.Основою прямого паралелепіпеда є ромб. Площа бічної поверхні паралелепіпеда дорівнює 25 см², а площа одного з діагональних перерізів - 10 см². Обчисліть площу другого діагонального перерізу цього паралелепіпеда

2.Основою прямого паралелепіпеда є ромб. Площі діагональних перерізів паралелепіпеда дорівнюють 15 см² і 20 см². Обчисліть площу бічної поверхні цього паралелепіпеда.​

Ответы

Автор ответа: kostyasmirow222
0

Відповідь:

Спочатку знайдемо одну зі сторін ромба, що є основою паралелепіпеда. Площа бічної поверхні паралелепіпеда дорівнює 25 см², і вона складається з двох ромбів (основ паралелепіпеда) і чотирьох прямокутних трикутників (бічні грани паралелепіпеда). Позначимо сторону ромба як "a".

Площа одного ромба = 25 см² / 2 = 12.5 см²

Тепер ми можемо знайти довжину сторони ромба, використовуючи формулу для площі ромба:

Площа ромба = (діагональ1 * діагональ2) / 2

12.5 см² = (dіагональ1 * dіагональ2) / 2

Діагональ1 * діагональ2 = 12.5 см² * 2 = 25 см²

Знаючи це, ми можемо знайти діагональ1 або діагональ2. Нехай, наприклад, діагональ1 = 5 см (діагональ2 буде 25 см² / 5 см = 5 см).

Тепер, коли ми знаємо діагональ1 і діагональ2, можемо обчислити площу другого діагонального перерізу ромба (і, відповідно, паралелепіпеда). Площа ромба обчислюється так:

Площа ромба = (діагональ1 * діагональ2) / 2

Площа ромба = (5 см * 5 см) / 2 = 25 см² / 2 = 12.5 см²

Для обчислення площі бічної поверхні паралелепіпеда використовуємо площі діагональних перерізів ромба. Площі діагональних перерізів подані, а ми позначимо їх як S1 і S2.

Площа бічної поверхні паралелепіпеда = 2 * (S1 + S2)

Площа бічної поверхні паралелепіпеда = 2 * (15 см² + 20 см²) = 2 * 35 см² = 70 см²

Отже, площа бічної поверхні цього паралелепіпеда становить 70 квадратних сантиметрів.

Покрокове пояснення:

Похожие вопросы
Предмет: Українська мова, автор: sharavaramasha05
Предмет: Математика, автор: liliyashu0472