Предмет: Математика, автор: bibik190193

ПОМОГИТЕ 100 БАЛЛОВ СРОЧНО РАДИ БОГА!!!!!
Доказать, что 36x^2+100y^2=3600 - уравнение эллипса. Найти координаты фокусов и расстояние между ними

Ответы

Автор ответа: viktoriatrocin3
0

Пошаговое объяснение:

Для доведення того, що рівняння 36x^2 + 100y^2 = 3600 є рівнянням еліпса, давайте спростимо його та перетворимо у стандартну форму. Спершу поділимо обидві сторони на 3600:

(36x^2 / 3600) + (100y^2 / 3600) = 1,

Тепер спростимо:

(x^2 / 100) + (y^2 / 36) = 1.

Зараз ми бачимо рівняння у стандартній формі для еліпса:

(x^2 / a^2) + (y^2 / b^2) = 1,

де "a" і "b" - піввеликі та півмалий радіуси еліпса відповідно.

У нашому випадку a^2 = 100 і b^2 = 36, отже, a = 10 та b = 6.

Фокуси еліпса розташовані вздовж вісі x та знаходяться на відстані "c" від центра, де "c" знаходиться за допомогою рівняння:

c^2 = a^2 - b^2,

c^2 = 100 - 36,

c^2 = 64,

c = 8.

Отже, координати фокусів знаходяться на відстані "c" від центра, вздовж вісі x:

Перший фокус: (c, 0) = (8, 0).

Другий фокус: (-c, 0) = (-8, 0).

Расстояніе між фокусами дорівнює величині "2c", тобто 2 * 8 = 16.

Отже, координати фокусів еліпса - (8, 0) та (-8, 0), і відстань між ними - 16 одиниць.

Похожие вопросы
Предмет: Қазақ тiлi, автор: sinicinadaniela