Предмет: Алгебра,
автор: maksimff58
√2x+1-√x-1=1 розв'язати вправи
Ответы
Автор ответа:
0
To solve the equation √(2x+1) - √(x-1) = 1, we can start by isolating one of the square roots. Let's isolate √(2x+1):
√(2x+1) = 1 + √(x-1)
Now, square both sides of the equation to eliminate the square root:
(√(2x+1))^2 = (1 + √(x-1))^2
Simplifying,
2x + 1 = 1 + 2√(x-1) + (x-1)
Combine like terms,
2x + 1 = 2√(x-1) + x
Now, let's isolate the square root term by moving all other terms to the left side:
2√(x-1) - x = -2x + 1
Next, square both sides again to eliminate the square root:
(2√(x-1) - x)^2 = (-2x + 1)^2
Expanding and simplifying,
4(x-1) - 4x√(x-1) + x^2 = 4x^2 - 4x + 1
Rearrange the equation to one side:
0 = 4x^2 - 5x - 3 + 4x√(x-1) - 4(x-1)
Combine like terms,
0 = 4x^2 - x - 7 + 4x√(x-1)
Now, let's isolate the square root term:
4x√(x-1) = x + 7 - 4x^2
Square both sides once more:
(4x√(x-1))^2 = (x + 7 - 4x^2)^2
Expanding and simplifying,
16x^2(x-1) = x^2 + 49 + 16x^4 - 14x - 28x^3
Rearrange the equation to one side:
0 = 16x^4 - 28x^3 + 15x^2 - 15x + 49
Unfortunately, this equation cannot be solved algebraically. You would need to use numerical methods or graphing to find an approximate solution.
√(2x+1) = 1 + √(x-1)
Now, square both sides of the equation to eliminate the square root:
(√(2x+1))^2 = (1 + √(x-1))^2
Simplifying,
2x + 1 = 1 + 2√(x-1) + (x-1)
Combine like terms,
2x + 1 = 2√(x-1) + x
Now, let's isolate the square root term by moving all other terms to the left side:
2√(x-1) - x = -2x + 1
Next, square both sides again to eliminate the square root:
(2√(x-1) - x)^2 = (-2x + 1)^2
Expanding and simplifying,
4(x-1) - 4x√(x-1) + x^2 = 4x^2 - 4x + 1
Rearrange the equation to one side:
0 = 4x^2 - 5x - 3 + 4x√(x-1) - 4(x-1)
Combine like terms,
0 = 4x^2 - x - 7 + 4x√(x-1)
Now, let's isolate the square root term:
4x√(x-1) = x + 7 - 4x^2
Square both sides once more:
(4x√(x-1))^2 = (x + 7 - 4x^2)^2
Expanding and simplifying,
16x^2(x-1) = x^2 + 49 + 16x^4 - 14x - 28x^3
Rearrange the equation to one side:
0 = 16x^4 - 28x^3 + 15x^2 - 15x + 49
Unfortunately, this equation cannot be solved algebraically. You would need to use numerical methods or graphing to find an approximate solution.
Похожие вопросы
Предмет: Математика,
автор: ksusanovoselova333
Предмет: Математика,
автор: kkidss
Предмет: Математика,
автор: lera552523
Предмет: Математика,
автор: katushonokdasha
Предмет: Литература,
автор: Umid85tj