Студент пришёл на экзамен по фармакологии,зная лишь 40 из 50 вопросов учебной программы.В экзаменационном билете три вопроса.Найти вероятность того, что студент ответит на первый вопрос билета(событие А), на второй вопрос (событие В) и на третий вопрос (событие С)
Ответы
Ответ:
P(A и B и C) = P(A) * P(B) * P(C) = (4/5) * (4/5) * (4/5) = 64/125.
Итак, вероятность того, что студент ответит на все три вопроса билета равна 64/125.
Пошаговое объяснение:
Ответ:
Для решения этой задачи нам понадобится предположение о том, что студент случайно выбирает вопросы из тех, которые он знает. Если это предположение верно, то каждый из трех вопросов на экзамене может быть одним из 40 вопросов, которые знает студент.
Вероятность того, что студент ответит на первый вопрос билета (событие А), составляет 40/50, так как у него есть 40 вопросов из 50 учебной программы.
Вероятность того, что студент ответит на второй вопрос билета (событие В), остается такой же, 40/50, так как каждый из оставшихся двух вопросов может быть одним из 40 вопросов, которые знает студент.
Аналогично, вероятность того, что студент ответит на третий вопрос билета (событие С), также составляет 40/50.
Теперь мы можем найти вероятность всех трех событий, умножив вероятности каждого события:
P(А и В и С) = P(А) * P(В) * P(С) = (40/50) * (40/50) * (40/50) = 0.512
Таким образом, вероятность того, что студент ответит на все три вопроса билета, составляет 0.512 или 51.2%.ние: