Знайдіть множину розв'язків нерівності:
Ответы
Ответ:
To solve the inequality 4b^2 - 4(b+2) < 9, we first distribute the -4 to get:
4b^2 - 4b - 8 < 9
Next, we move all the terms to one side to get a quadratic inequality:
4b^2 - 4b - 8 - 9 < 0
Simplifying further, we have:
4b^2 - 4b - 17 < 0
To solve this inequality, we can use the quadratic formula. The quadratic formula states that for a quadratic equation of the form ax^2 + bx + c = 0, the solutions are given by:
x = (-b ± √(b^2 - 4ac)) / 2a
In our case, a = 4, b = -4, and c = -17. Plugging these values into the quadratic formula, we get:
b = (-(-4) ± √((-4)^2 - 4(4)(-17))) / (2(4))
Simplifying further:
b = (4 ± √(16 + 272)) / 8
b = (4 ± √288) / 8
b = (4 ± 16.97) / 8
Now we have two possible solutions for b:
b = (4 + 16.97) / 8 ≈ 2.87
b = (4 - 16.97) / 8 ≈ -1.37
Therefore, the solution to the inequality 4b^2 - 4(b+2) < 9 is approximately -1.37 < b < 2.87.
Объяснение:
сори то что на английском