Предмет: Геометрия, автор: kmazur802

СРОЧНО

6) В равнобокой трапеции диагональ является биссектрисой острого угла, большее основание её равно 8,5 см, а боковая сторона равна 3,5 см.
Определите периметр трапеции и её среднюю линию.

Ответы

Автор ответа: mak4an4a
1

Сначала найдем длину диагонали, которая является биссектрисой острого угла равнобокой трапеции. Поскольку у нас есть боковая сторона (3,5 см) и половина большего основания (половина 8,5 см равно 4,25 см), мы можем использовать теорему Пифагора для нахождения длины диагонали (d):

d^2 = (4,25 см)^2 + (3,5 см)^2

d^2 = 18,0625 см^2 + 12,25 см^2

d^2 = 30,3125 см^2

Теперь найдем длину диагонали (d) путем извлечения квадратного корня из этой суммы:

d = √30,3125 см ≈ 5,5 см (округлено до ближайшей десятой).

Теперь мы можем найти периметр трапеции (P). Периметр трапеции равен сумме всех её сторон. В данном случае у нас есть два равных отрезка (боковые стороны) длиной 3,5 см, большее основание длиной 8,5 см и диагональ длиной 5,5 см.

P = 3,5 см + 3,5 см + 8,5 см + 5,5 см = 21 см

Периметр равнобокой трапеции составляет 21 см.

Теперь найдем среднюю линию (медиану) трапеции. Средняя линия равнобокой трапеции соединяет середины большего и меньшего оснований. Средняя линия будет равной половине суммы большего и меньшего оснований:

Средняя линия = (8,5 см + 3,5 см) / 2 = 12 см / 2 = 6 см

Средняя линия равнобокой трапеции составляет 6 см.

Похожие вопросы
Предмет: Математика, автор: georgcvet
Предмет: География, автор: elizavetalevcenko986
Предмет: Математика, автор: aizerenikto