Предмет: Геометрия, автор: mariapetruk95

Дано пряму а і т. А, що не лежить на ній. Довести що пряма С, яка проходить через т. А і перетинає пряму , лежить з нимив одній площині.​

Ответы

Автор ответа: marvexxq
1

Ответ:

Необхідно довести, що пряма С лежить в одній площині з прямою а і т. А. Для цього достатньо показати, що вектори, що задають прямі а і С, лежать в одній площині.

Нехай точка А має координати (x1, y1, z1), а пряма а задається параметричними рівняннями:

x = x1 + at

y = y1 + bt

z = z1 + ct

Для прямої С задамо точку B з координатами (x2, y2, z2), через яку проходить пряма С, і вектор напрямку d = (dx, dy, dz).

Тоді параметричні рівняння прямої С мають вигляд:

x = x2 + adt

y = y2 + bdt

z = z2 + cdt

Вектор, що задає пряму а, можна записати як:

v1 = (a, b, c)

А вектор, що задає пряму С, можна записати як:

v2 = (dx, dy, dz)

Якщо вектори v1 і v2 лежать в одній площині, то їх векторний добуток дорівнюватиме нулю:

v1 x v2 = 0

Розрахуємо векторний добуток:

v1 x v2 =

= (b * dz - c * dy, c * dx - a * dz, a * dy - b * dx)

Якщо цей вектор дорівнює нулю, то вектори v1 і v2 лежать в одній площині.

Розглянемо кожну координату окремо:

b * dz - c * dy = acos(α) * dsin(β) - asin(α) * dcos(β) = ad(sin(β)cos(α) - cos(β)sin(α)) = 0

c * dx - a * dz = acos(β) * dsin(γ) - asin(β) * dcos(γ) = ad(sin(γ)cos(β) - cos(γ)sin(β)) = 0

a * dy - b * dx = acos(γ) * dsin(α) - asin(γ) * dcos(α) = ad(sin(α)cos(γ) - cos(α)sin(γ)) = 0

Отже, усі три координати векторного добутку дорівнюють нулю, тому вектори v1 і v2 лежать в одній площині. Це означає, що пряма С лежить в одній площині з прямою а і т. А.

Відміть як Найкраща відповідь будь ласка

Похожие вопросы
Предмет: Математика, автор: snizanapasin
Предмет: Английский язык, автор: vadimciranenko
Предмет: Алгебра, автор: oleghurin
Предмет: Русский язык, автор: alexandrsmelkov