Предмет: Алгебра, автор: reygen

Паша хочет выписать на доску все пятизначные числа, в которых первая цифра больше второй, вторая цифра больше третьей, а третья больше четвёртой. Сколько чисел ему придётся выписать? Решите выше указанную задачу, и сделайте алгоритм который будет решать подобные задачи для n-значных чисел


Amalgamma143: Для n-значных чисел требование такое же? только про первая больше второй, вторая - третьей а третья - четвертой?
reygen: конечно

Ответы

Автор ответа: Elizabeth1188
0

Ответ:

Чтобы решить данную задачу, мы можем использовать следующий алгоритм:

1. Задаем переменную count и инициализируем ее значением 0. Она будет использоваться для подсчета количества чисел, удовлетворяющих условию.

2. Используем вложенные циклы для перебора всех возможных комбинаций цифр в числе. Внешний цикл будет отвечать за первую цифру, а внутренние циклы - за остальные цифры.

3. Внутри вложенных циклов проверяем условие, что каждая следующая цифра больше предыдущей. Если это условие выполняется для всех цифр, увеличиваем переменную count на 1.

4. По завершении вложенных циклов выводим значение переменной count, которое будет содержать количество чисел, удовлетворяющих условию.

Пример реализации данного алгоритма на языке Python:

python

count = 0

for digit1 in range(1, 10):

for digit2 in range(0, digit1):

for digit3 in range(0, digit2):

for digit4 in range(0, digit3):

for digit5 in range(0, digit4):

count += 1

print(count)

В данном примере мы перебираем все возможные комбинации цифр от 1 до 9 для первой цифры, и от 0 до предыдущей цифры для остальных цифр. Каждая комбинация, удовлетворяющая условию, увеличивает переменную count на 1. По завершении циклов выводим значение count.

Данный алгоритм можно модифицировать для решения подобных задач для чисел любой длины, заменив вложенные циклы на рекурсивную функцию, которая будет перебирать все возможные комбинации цифр.


reygen: Тут алгебра, а не информатика, такой алгоритм мне не нужен...
igorShap: Ну, как минимум тут опечатки: выравнивание для Питона важно + переменная count увеличивается без проверки условия. Учитывая стилистику текста и другие ответы в математике, а так же то, что ответ был написан за 5 минут, - я думаю, сомнений не должно быть, откуда этот ответ
Автор ответа: Amalgamma143
1

Первые 4 цифры нашего числа по условию задачи различны. Всего выбрать 4 различных цифры можно 10*9*8*7 = 5040 способами. При этом все эти варианты можно разбить на подгруппы, являющиеся перестановками одного и того же набора цифр. Количество элементов в одной такой подгруппе это число перестановок 1*2*3*4=24.

Среди всех возможных перестановок 4 неповторяющихся цифр в порядке убывания следует только одна. В этом легко убедиться, так как любая перестановка этого "правильного" варианта автоматически нарушит принцип убывания

Поэтому для первых 4 цифр число возможных вариантов в итоге оказывается равным числу сочетаний из 10 по 4, то есть 5040/24 =210. Остальные цифры могут быть какие угодно поэтому общее число чисел

N = 210\cdot10^{n-4}


Amalgamma143: Только про алгоритм непонятно, там же просто главное количество начал посчитать, а концы - любые цифры
reygen: Это да, просто мне показалось что там сложнее считать
Amalgamma143: Version 2.0. Оказалось все еще проще
VоЛk: Хорошее решение, я по-другому думал) Мне кажется, что для n чисел надо брать с 1-й до n-1-й цифры понижение, что ограничивает максимальную длительность числа до 11 разрядов, но всё таки
Похожие вопросы
Предмет: Геометрия, автор: spects