Предмет: Математика, автор: Tokeridze

От такой интеграл есть, нужно пошаговое решение
∫cos^43xdx

Чтобы ответ был:
3/8x + 1/12*6sin x + 1/96 12sin x + C​

Ответы

Автор ответа: polarkat
1

\int{\cos^{4}\left(3\,x\right)}{\;\mathrm{d}x}\overset{3x=u}{=}\int{\dfrac{\cos^{4}\left(u\right)}{3}}{\;\mathrm{d}u}=\dfrac{1}{3}\int{\dfrac{\left({\cos\left(2\,u\right)+1}\right)^{2}}{4}}{\;\mathrm{d}u}\overset{2u=v}{=}\dfrac{1}{12}\int{\dfrac{\left({\cos\left(v\right)+1}\right)^{2}}{2}}{\;\mathrm{d}v}=\\=\dfrac{1}{24}\int{\left (\cos^{2}\left(v\right)+2\,\cos\left(v\right)+1  \right )}{\;\mathrm{d}v}=\dfrac{1}{24}\left(\int{\cos^{2}\left(v\right)}{\;\mathrm{d}v}+2\int{\cos\left(v\right)}{\;\mathrm{d}v}+\int{1}{\;\mathrm{d}v}\right)=\\=\dfrac{\sin\left(2\,v\right)}{96}+\dfrac{\sin\left(v\right)}{12}+\dfrac{v}{16}+C=\dfrac{\sin\left(4\,u\right)}{96}+\dfrac{\sin\left(2\,u\right)}{12}+\dfrac{u}{8}+C=\\=\dfrac{\sin\left(12\,x\right)}{96}+\dfrac{\sin\left(6\,x\right)}{12}+\dfrac{3\,x}{8}+C

Автор ответа: bogdanrudakov28
1

Ответ:

Отже, правильний відповідь є:

(3/8)x + (1/12) * 6 * sin(x) + (1/96) * 12 * sin(x) + C, де C - довільна константа.

Пошаговое объяснение:

Даний інтеграл: ∫cos^4(3x) dx

Застосуємо формулу зведення до лінійного для степеневих функцій:

∫cos^4(3x) dx = ∫(cos^2(3x))^2 dx

Застосуємо формулу зведення до лінійного знову:

∫(cos^2(3x))^2 dx = ∫(1/2 + 1/2 * cos(6x))^2 dx

Розкриємо квадрат:

∫(1/2 + 1/2 * cos(6x))^2 dx = ∫(1/4 + 1/2 * cos(6x) + 1/4 * cos^2(6x)) dx

Розкриємо останній доданок:

∫(1/4 + 1/2 * cos(6x) + 1/4 * cos^2(6x)) dx = ∫(1/4 + 1/2 * cos(6x) + 1/4 * (1 + cos(12x))/2) dx

Спростимо вираз:

∫(1/4 + 1/2 * cos(6x) + 1/4 * (1 + cos(12x))/2) dx = 1/4 ∫dx + 1/2 ∫cos(6x) dx + 1/8 ∫(1 + cos(12x)) dx

Обчислимо окремі інтеграли:

∫dx = x + C₁

∫cos(6x) dx = (1/6) * sin(6x) + C₂

∫(1 + cos(12x)) dx = x + (1/12) * sin(12x) + C₃

Підставимо ці значення назад у вихідний вираз:

1/4 ∫dx + 1/2 ∫cos(6x) dx + 1/8 ∫(1 + cos(12x)) dx = 1/4 (x + C₁) + 1/2 ((1/6) * sin(6x) + C₂) + 1/8 (x + (1/12) * sin(12x) + C₃)

Спрощуємо:

1/4 (x + C₁) + 1/2 ((1/6) * sin(6x) + C₂) + 1/8 (x + (1/12) * sin(12x) + C₃) = (3/8)x + (1/12) * 6 * sin(x) + (1/96) * 12 * sin(x) + C

Отже, правильний відповідь є:

(3/8)x + (1/12) * 6 * sin(x) + (1/96) * 12 * sin(x) + C, де C - довільна константа.

Похожие вопросы
Предмет: Английский язык, автор: mohammadnahed393
a. on 1. Choose the correct answer from a, b, c, or d: (16 Marks) 1. My brothers and I ……………………………………………….. our success to the efforts of our parents. a. own b. belong c. lend d. owe 2. The children were asked to stand in a a. law b. raw c. row d. rue 3. I could see him. ........ at me and telling the other guests what I had said. a. pointing b. fronting c. shooting d. circling 4. Sooner or later, terrorism will disappear.......... ...... our life. b. from c. into d. of 5. Rescuers used a special...... for finding people trapped in collapsed buildings. a. realize b. advice c. device d. delight 6. I.. .this man for his determination and strong will. a. admire b. press c. donate d. collect 7. Click on this link to visit our ..... bookstore. a. offline b. lining c. line d. online 8. My father drives me my school every morning. a. at b. about c. with d. to 9. I know this idea sounds .... , but it may be worth a try. a. amazing b. crazy c. dizzy d. interesting 10. A/An........ is someone who judges less serious crimes in a court of law. a. magistrate b. delegate c. criminal d. engineer spicy foods. a. don't use to b. didn't use to c. am not used to d. wasn't used for 12. At eleven last night, she .......... her homework. a. have done b. was doing c. was done d. doing 13. Never....... to school late. a. does he come b. he comes c. comes he d. is he come 14. I haven't tried Chinese food..... .......... It has never happened. a. before b. ago c. since 15. The man .... his mobile while driving so he paid a fine. a. was using b. has used c. was used d. uses 16. Have you finished ......... that book that I gave you? a. to read b. reading c. read d. reads d. yet
Предмет: Геометрия, автор: miroslavadoronina3
Предмет: Физика, автор: OvlNastya
Предмет: Математика, автор: HunterX05