Очень нужна ваша помощь
Даны функции

и

1. Найти количество нулей функции f в интервале от [3,22).
2.Найти наибольшее значение функции g.
3.Найти наименьшее значение функции

4.Найти основной период функции f.
Ответы
Ответ:
Объяснение:
4. Период функции y=cosx T=2π
Тогда период функции y=cos(πx/6) T1=T*6/π=2*π*6/π=12
T1=12
1. Найдем значение функции в начале заданного интервала
f(3)=cos(π*3/6)=cos(π/2)=0
При х=3 функция равна ноль.
Тогда на интервале х∈(3; 3+T1] =(3;15] f(x) будет иметь еще 2 нуля (так график функции cos пересекает ось абсцисс 2 раза за период)
при х=9 и х=15
Заметим , что длина оставшейся части интервала (15;22) =22-16=7>T1/2 , но меньше Т1 (Т1=12) . Значит на участке х∈(15;22) функция f(x) имеет еще 1 ноль при х=21.
Итого на интервале [3,22) функция f(x) имеет четыре нуля.
2. g(x)=g(-x) => g(x) четная. Причем на интервале х∈(-∞;0) - функция монотонно возрастает, а при х∈(0;+∞) функция монотонно убывает.
=> при х=0 функция имеет максимум g(0)=24/2=12
3.
Заметим , что у(х)>0 для всех х∈R, так как и числитель и знаменатель положительны при любых х
Тогда функция будет иметь минимум при максимальном значении знаменателя. Знаменатель равен максимуму при х , при которых
равен максимуму cos²(πx/6) . Максимальное значение cos это 1. Значит и максимальное значение квадрата косинуса =1
=> максимальное значение знаменателя 2+1=3
=> Найти наименьшее значение функции y(x) = 24/3=8