Предмет: Математика, автор: xxanarchyfate1337

знайти частинні розв'язки рівнянь які задовольняють початковим умовам y''+9y=sin3x y(0)=y'(0)=1

Ответы

Автор ответа: lyelizavyeta
1

Відповідь: я

Покрокове пояснення:

Explanation:

y

'

'

+

9

y

=

0

is a linear homogeneous differential equation with constant parameters. The general solution for an equation of this kind is

y

=

e

λ

x

substituting we get

(

λ

2

+

9

)

e

λ

x

=

0

but

e

λ

x

0

for all

x

R

so

λ

2

+

9

=

0

λ

=

±

3

i

so

y

=

C

1

e

3

i

x

+

C

2

e

3

i

x

but using the de Moivre's identity

e

i

x

=

cos

x

+

i

sin

x

and assuming that the solution is real, we easily could establish analogously

y

=

C

3

sin

(

3

x

)

+

C

4

cos

(

3

x

)

Answer link

Cem Sentin

Dec 16, 2017

y

=

c

1

cos

3

x

+

c

2

sin

3

x

Explanation:

If

y

1

=

sin

3

x

i solution of this differential equation, I used

y

=

u

sin

3

x

and

y

'

'

=

u

'

'

sin

3

x

+

6

u

'

cos

3

x

9

u

sin

3

x

transformation.

Hence,

u

'

'

sin

3

x

+

6

u

'

cos

3

x

9

u

sin

3

x

+

9

u

sin

3

x

=

0

u

'

'

sin

3

x

+

6

u

'

cos

3

x

=

0

It reduced to linear differential equation in terms of

u

'

Consequently,

u

'

'

u

'

+

6

cos

3

x

sin

3

x

=

0

After integrating both sides,

ln

u

'

+

2

ln

(

sin

3

x

)

=

ln

(

3

c

1

)

ln

[

u

'

(

sin

3

x

)

2

]

=

ln

(

3

c

1

)

u

'

(

sin

3

x

)

2

]

=

3

c

1

u

'

=

3

c

1

(

sin

3

x

)

2

After integrating both sides,

u

=

c

1

cot

3

x

+

c

2

Thus,

y

=

u

sin

3

x

=

sin

3

x

(

c

1

cot

3

x

+

c

2

)

=

c

1

cos

3

x

+

c

2

sin

3

x

Answer link

Похожие вопросы
Предмет: Математика, автор: Rainy1337