Предмет: Математика,
автор: davidlysak727
Бічна сторона рівнобедреного трикутника ділиться точкою дотику вписаного кола у відношенні 3:2, рахуючи від вершини кута при основі трикутника. Знайдіть сторони трикутника, якщо його периметр дорівнює 64 см.
зроби це по знанням 7го класу
зроби це через дано та розвязок
Ответы
Автор ответа:
1
Дано:
Бічна сторона рівнобедреного трикутника ділиться точкою дотику вписаного кола у відношенні 3:2, рахуючи від вершини кута при основі трикутника
P трикутника = 64 см
Знайти:
Сторони трикутника
Розв’язок:
a/2 = 3b/5
a/2 = 3(64 - 2a)/5
a = 20
2a + b = 64
b = 64 - 2a
b = 24
Відповідь: Бічна сторона рівнобедреного трикутника дорівнює 20 см, а основа - 24 см
davidlysak727:
спасибо
Автор ответа:
1
дано:(переписуємо умову)
по відношенню як 3:2
основа-2х
бічні сторони-6х(3х•2)-як рівнобедрені
Р-64 см.
2х+6х=64
8х=64
х=64:8=8
8•2=16(см)-основа
(8•3)2=48(см)-сума двох бічних сторін
48:2=24(см)-одна бічна сторона
відповідь: бічні сторони у рівнобедреного трикутника=48см(кожна по 24), основа=16см.
по відношенню як 3:2
основа-2х
бічні сторони-6х(3х•2)-як рівнобедрені
Р-64 см.
2х+6х=64
8х=64
х=64:8=8
8•2=16(см)-основа
(8•3)2=48(см)-сума двох бічних сторін
48:2=24(см)-одна бічна сторона
відповідь: бічні сторони у рівнобедреного трикутника=48см(кожна по 24), основа=16см.
Похожие вопросы
Предмет: История,
автор: markzaremba2244
Предмет: Литература,
автор: m1kaf
Предмет: Українська література,
автор: animalfbr
Предмет: Русский язык,
автор: Аноним