Предмет: Геометрия,
автор: Вопрос97
Всем привет..Помогите, пожалуйста, на завтра очень надо...Решите любые,которые сможете...
1) В правильной четырехугольной пирамиде сторона основания 10, а высота 30. Найти углы наклона боковых ребер и боковых граней к плоскости основания.
2) В правильной четырёхугольной пирамиде боковые грани наклонены к основанию под углом 60°. Боковые ребра равны 6√2 и наклонены к основанию под углом 45°. Найти площадь боковой поверхности.
3) Основанием пирамиды MABC служит треугольник ABC, у которого AB=6, ACB=150°. Боковые ребра пирамиды наклонены к основанию под углом 45°. Найти высоту пирамиды.
Желательно с рисунком...
Ответы
Автор ответа:
0
1) Пусть наша пирамида , опустим высоту , тогда рассмотрим прямоугольный треугольник
с прямым углом .
Тогда угол между ребром и плоскости основания
Рассмотрим прямоугольный треугольник где
середина стороны
тогда
из прямоугольного треугольника
это угол между боковой гранью и основанием
2) Пусть нам дана пирамида , тогда опустим высоту
Откуда
обозначим сторону квадрата как , тогда
Найдем высоту боковой грани , рассмотрим треугольник - где середина стороны основания .
Откуда высота грани равна по теореме Пифагора
Тогда площадь боковой поверхности равна
где - полупериметр основания он равен
3) По теореме синусов найдем радиус описанной окружности он будет катетом , если провести высоту , и рассмотреть прямоугольный треугольник образованный высотой , боковой гранью и радиусом описанной окружности .
тогда из прямоугольного треугольника , получим что высота будет равна радиусу описанной окружности так как углы равны по - равнобедренный треугольник
с прямым углом .
Тогда угол между ребром и плоскости основания
Рассмотрим прямоугольный треугольник где
середина стороны
тогда
из прямоугольного треугольника
это угол между боковой гранью и основанием
2) Пусть нам дана пирамида , тогда опустим высоту
Откуда
обозначим сторону квадрата как , тогда
Найдем высоту боковой грани , рассмотрим треугольник - где середина стороны основания .
Откуда высота грани равна по теореме Пифагора
Тогда площадь боковой поверхности равна
где - полупериметр основания он равен
3) По теореме синусов найдем радиус описанной окружности он будет катетом , если провести высоту , и рассмотреть прямоугольный треугольник образованный высотой , боковой гранью и радиусом описанной окружности .
тогда из прямоугольного треугольника , получим что высота будет равна радиусу описанной окружности так как углы равны по - равнобедренный треугольник
Похожие вопросы
Предмет: Математика,
автор: Aksana761
Предмет: Физика,
автор: violabondarenko
Предмет: История,
автор: guzyaakr07gmailcom
Предмет: Математика,
автор: anisenko