Предмет: Математика, автор: g02526750

Знайти інтеграли, використовуючи метод інтегрування частинами.​

Приложения:

Ответы

Автор ответа: Alnadya
0

Решение.

В этом примере придётся два раза применять интегрирование по частям, так как записан многочлен второй степени .

Формула :   \bf \displaystyle \int u\, dv=uv-\int v\, du   .

\bf \displaystyle \int (2+x-x^2)\, e^{-x}\, dx=\\\\\\=\Big[\ u=2+x-x^2\ ,\ du=(1-2x)\, dx\ ,\ dv=e^{-x}\, dx\ ,\ v=-e^{-x}\ \Big]=\\\\\\=-(2+x-x^2)\cdot e^{-x}+\int (1-2x)\, e^{-x}\, dx=\\\\\\=\Big[\ u=1-2x\ ,\ du=-2\, dx\ ,\ dv=e^{-x}\ ,\ v=-e^{-x}\ \Big]=\\\\\\=-(2+x-x^2)\cdot e^{-x}-(1-2x)\, e^{-x}-\int 2\, e^{-x}\, dx=\\\\\\=-(2+x-x^2)\cdot e^{-x}-(1-2x)\, e^{-x}+2e^{-x}+C  

Приложения:
Похожие вопросы
Предмет: География, автор: nastinnes