Предмет: Математика, автор: barh987654321zet

Допоможіть зробити ЛІНІЙНІ ОДНОРІДНІ ДИФЕРЕНЦІАЛЬНІ РІВНЯННЯ ЗІ СТАЛИМИ КОЕФІЦІЄНТАМИ

Приложения:

Ответы

Автор ответа: Indentuum
1

1) не дифференциальное уравнение?
2)

e^x (1 + y^2) dx - 2y (1 + e^x) dy = 0\\\frac{e^xdx}{1 + e^x} = \frac{2ydy}{1 + y^2}\\\int\frac{d(1 + e^x)}{1 + e^x} = \int\frac{d(1 + y^2)}{1 + y^2}\\\ln{(1 + e^x)} + c_0 = \ln{(1 + y^2)}\\y^2 = c_1(1 + e^x) - 1\\y = \pm \sqrt{c_1(1 + e^x) - 1}

3)

x\sqrt{5 + y^2}dx + y\sqrt{4 + x^2}dy = 0\\\frac{xdx}{\sqrt{4+x^2}} = -\frac{ydy}{\sqrt{5+y^2}}\\\int \frac{d(4 + x^2)}{2\sqrt{4 + x^2}} = -\int \frac{d(5 + y^2)}{2\sqrt{5 + y^2}}\\\sqrt{4 + x^2} + c_0 = -\sqrt{5 + y^2}\\y^2 = (\sqrt{4 + x^2} + c_0)^2 - 5\\y = \pm \sqrt{(\sqrt{4 + x^2} + c_0)^2 - 5}

4)

y' = \frac{y}{x} + \sin{\frac{y}{x}}\\\\\fbox{$y(x) = x t(x)$}\\\\t + \frac{xdt}{dx} = t + \sin{(t)}\\x dt = \sin{(t)} dx \\\int \frac{dt}{\sin(t)} = \int \frac{dx}{x}\\\ln \mathrm{tg} (t/2) = \ln x + c_0\\\mathrm{tg} (t/2) = c_1 x\\t = \frac{y}{x} = 2\mathrm{arctg}(c_1x)\\y = 2x\mathrm{arctg} (c_1 x)

5)

xy' + y = \ln x + 1\\\frac{xdy}{dx} + \frac{ydx}{dx} = \ln x + 1\\\int d(xy) = \int (\ln x + 1) dx\\xy = x \ln x + c_0\\y = \ln x + \frac{c_0}{x}

6)

a)

x(y^2 + 1)dy + y(x^2 - 1)dx = 0, y(1) = 1\\\frac{(y^2 + 1)dy}{y} = -\frac{(x^2 - 1)dx}{x}\\\frac{y^2}{2} + \ln y = \ln x - \frac{x^2}{2} + c_0\\\ln{(ye^{\frac{y^2}{2}})} = \ln{(xe^{-\frac{x^2}{2} + c_0})}\\ye^{\frac{y^2}{2}} = xe^{-\frac{x^2}{2} + c_0}\\1e^{\frac12} = 1e^{-\frac12 + c_0} \Rightarrow c_0 = 1\\ye^{\frac{y^2}{2}} = xe^{-\frac{x^2}{2} + 1}

б)

y' + 2xy = xe^{-x^2} \sin x, y(0) = 1\\e^{x^2}dy + e^{x^2}2xydx =  x\sin xdx\\\int d(ye^{x^2}) = \int x \sin x dx\\\fbox{$\int x \sin x dx = -x\cos(x) + \int \cos(x) dx = -x \cos(x) + \sin(x) + C$}\\ye^{x^2} = \sin(x) - x \cos(x) + c_0\\y = e^{-x^2}(\sin(x) - x \cos(x) + c_0)\\1 = e^{0}(\sin(0) - 0\cos(0) + c_0) \Rightarrow c_0 = 1\\y = e^{-x^2}(\sin(x) - x \cos(x) + 1)

Похожие вопросы
Предмет: История, автор: jakey06
Предмет: Русский язык, автор: Znaykkin
Предмет: Математика, автор: katrincitrus