у циліндрі проведено переріз який паралельний його осі та віддалений від неї на 3 см. Діагональ перерізу дорівнює 16 і утворює з площиною основи циліндра 60 . знайдіть радіус основи. 50 ваша хто зробить треба срочно
Ответы
Відповідь:Давайте розглянемо дану задачу. Нехай r буде радіусом основи циліндра.
Зауважимо, що діагональ перерізу утворює прямокутний трикутник з площиною основи циліндра. Отже, можемо скористатися теоремою Піфагора для знаходження довжини другої сторони прямокутного трикутника.
За теоремою Піфагора:
діагональ^2 = сторона1^2 + сторона2^2
У нашому випадку:
16^2 = r^2 + (r + 3)^2
Розкриваємо квадрати:
256 = r^2 + r^2 + 6r + 9
Об'єднуємо подібні члени:
2r^2 + 6r - 247 = 0
Залишається розв'язати це квадратне рівняння для знаходження значення r. Можемо скористатися формулою квадратного кореня:
r = (-b ± √(b^2 - 4ac)) / (2a)
В нашому випадку:
a = 2, b = 6, c = -247
Підставляємо ці значення в формулу і розв'язуємо:
r = (-6 ± √(6^2 - 4 * 2 * -247)) / (2 * 2)
r = (-6 ± √(36 + 1976)) / 4
r = (-6 ± √2012) / 4
Зауважте, що ми отримаємо два можливі значення для r. Вибираємо позитивне значення, оскільки радіус не може бути від'ємним:
r = (-6 + √2012) / 4
Отже, радіус основи циліндра дорівнює (-6 + √2012) / 4. Це приблизно 3.78 см.
Покрокове пояснення: