Предмет: Математика, автор: polinadovzhik058

5. Побудуйте у координатній площині прямокутник ABCD, якщо відомо координати трьох його вершин. А(2;5), В(7;5), C(7;2) 1)Знайдіть координати четвертої вершини. DO;0) 2)Обчисліть площу і периметр прямокутника, вважаючи, що довжина одиничного відрізка координатних осей дорівнює 1см. S = cм², P = см. Відстань, км​

Ответы

Автор ответа: artemenkolyuda597
0

Відповідь:

Покрокове пояснення:

1) Координати четвертої вершини можна знайти, знаючи, що протилежні сторони прямокутника паралельні та мають однакову довжину. Таким чином, можна знайти вектор, який сполучає точки A та B і додати його до точки C, щоб отримати координати точки D:

$$\overrightarrow{AB} = \begin{pmatrix}7-2 \\ 5-5\end{pmatrix} = \begin{pmatrix}5 \\ 0\end{pmatrix}$$

$$D = C + \overrightarrow{AB} = \begin{pmatrix}7 \\ 2\end{pmatrix} + \begin{pmatrix}5 \\ 0\end{pmatrix} = \begin{pmatrix}12 \\ 2\end{pmatrix}$$

Таким чином, координати точки D дорівнюють (12;2).

2) Площа прямокутника може бути обчислена за формулою: S = AB * BC. Довжина сторін AB та BC може бути обчислена за допомогою формули відстані між двома точками:

$$AB = \sqrt{(7-2)^2 + (5-5)^2} = \sqrt{25} = 5$$

$$BC = \sqrt{(7-7)^2 + (2-5)^2} = \sqrt{9} = 3$$

Таким чином, площа прямокутника S = AB * BC = 5 * 3 = 15 см².

Периметр прямокутника можна знайти, додавши довжини його сторін:

$$P = 2AB + 2BC = 2(5) + 2(3) = 16\text{см}$$

Отже, периметр прямокутника дорівнює 16 см.

Похожие вопросы
Предмет: Русский язык, автор: dariazhastilek
Предмет: Алгебра, автор: macddonl
Предмет: Физика, автор: iambelyashh
Предмет: География, автор: ddss45063