1 рівень (3б)
1. Василько зібрав у лісі 100 білих грибів. Скільки грибів залишилося у
хлопчика після того, як він продав b грибів?
А. 100 : b; Б. 100 + b; В. 100 - b ; Г. 100 b .
2. Число 9 є коренем якого рівняння?
А. 747-х =736 ; Б. 738 : х = 82 .
3. Розв'яжіть рівняння: 35х = 595.
2 рівень (3 б)
4. Знайдіть значення виразу x + (y - 756), якщо x = 1642, а у = 1556.
5. Розв’яжіть рівняння: (х-345) : 6 = 210
3 рівень (3б)
6. З двох міст, відстань між якими 68 км, одночасно назустріч один одному
виїхало два велосипедисти зі швидкостями 15 км/год і 19 км/год. Через який
час вони зустрінуться?
7. Відстань між двома пристанями 72км. Моторний човен долає цей шлях за
течією річки за 3год, а проти течії за 4год. Знайти швидкість течії річки.
4 рівень (3 б)
8. Із двох пунктів, відстань між якими 435 км, одночасно назустріч один
одному виїхали два автомобілі один із них зі швидкістю 80 км/год. Через 3
години вони зустрілися на станції технічного обслуговування. З якою
швидкістю їхав другий автомобіль.
ПЖ ДОПОМОЖІТЬ ДАЮ 30 БАЛ.
Ответы
Ответ:
.
Пошаговое объяснение:
1. Відповідь: В. 100 - b
2. Відповідь: А. 747 - х = 736
3. Розв'язання: 35х = 595
Розділимо обидві частини рівняння на 35:
35х/35 = 595/35
x = 17
4. Значення виразу x + (y - 756), де x = 1642 і y = 1556:
x + (y - 756) = 1642 + (1556 - 756)
= 1642 + 800
= 2442
5. Розв'язання: (х - 345) / 6 = 210
Помножимо обидві частини рівняння на 6:
6 * (х - 345) / 6 = 210 * 6
х - 345 = 1260
Додамо 345 до обох боків рівняння:
х - 345 + 345 = 1260 + 345
х = 1605
6. Відстань = швидкість * час
Зустрінуться за час, коли відстань, яку вони пройшли разом, буде дорівнювати 68 км:
15t + 19t = 68
34t = 68
t = 2 години
7. Швидкість течії річки = (відстань / час_проти_течії - відстань / час_з_течією) / 2
(72 / 4 - 72 / 3) / 2
(18 - 24) / 2
-6 / 2
-3 км/год (течія рухається проти напрямку човна)
8. Відстань = швидкість * час
Зустрінуться через 3 години на відстані 435 км, тому швидкість другого автомобіля дорівнює:
швидкість_другого_автомобіля = відстань / час
швидкість_другого_автомобіля = 435 / 3
швидкість_другого_автомобіля = 145 км/год