Предмет: Алгебра,
автор: r21g3l223wq
Подайте число 12 у вигляді суми дво невід'ємних доданків, так щоб сума їхніх квадратів була НАЙМЕНШОЮ.
Ответы
Автор ответа:
0
Згідно з теоремою Лежандра-Жакобі, кожне натуральне число можна представити у вигляді суми трьох квадратів не меншим, ніж дві з яких можуть бути нульові.
Таким чином, число 12 можна представити у вигляді суми квадратів трьох цілих чисел таким чином:
12 = 2^2 + 2^2 + 2^2
Але, згідно з умовою задачі, ми шукаємо суму двох доданків, тому можемо проігнорувати третій доданок. Отже, ми можемо подати число 12 у вигляді суми двох доданків 2^2 та 2^2, тобто:
12 = 2^2 + 2^2
Сума їхніх квадратів дорівнює 2^2 + 2^2 = 8, що є найменшою можливою сумою квадратів для цього числа. Таким чином, ми досягли мінімуму, який могли досягти.
Похожие вопросы
Предмет: История,
автор: polinakajsin
Предмет: Русский язык,
автор: SHILEINEKATERINA
Предмет: Биология,
автор: yanakuznetsova0112
Предмет: Математика,
автор: medanikinna50
Предмет: Биология,
автор: devmad