Предмет: Математика, автор: 2077CyBeRpUnK

60 баллов
Воду из полностью заполненного аквариума, который имеет форму прямоугольного параллелепипеда перелили в аквариум в форме куба. Каким наименьшим натуральным числом сантиметров может быть выражена длина ребра этого куба, если измерения равны: 60см, 40см и 50см?​

Ответы

Автор ответа: nikitasmelev865
1

Ответ:

Объем воды в прямоугольном параллелепипеде можно найти по формуле: V = lwh, где l, w и h - длина, ширина и высота соответственно. Таким образом, объем воды в исходном аквариуме равен V1 = 60см * 40см * 50см = 120000см^3.

Объем воды в кубе равен V2 = a^3, где a - длина ребра куба. Так как мы переливаем всю воду из исходного аквариума в куб, то V1 = V2. Таким образом, уравнение, которое мы должны решить, будет иметь вид:

a^3 = 120000

Наименьшее натуральное число a, удовлетворяющее этому уравнению, может быть найдено путем вычисления кубического корня из 120000:

a = ∛120000 ≈ 48,6

Однако, нам нужно наименьшее натуральное число a. Поэтому мы можем округлить 48,6 до ближайшего большего натурального числа, которое является кубическим корнем из 120000. Это число равно 49.

Таким образом, наименьшее натуральное число сантиметров, которым может быть выражена длина ребра куба, равно 49.

Пошаговое объяснение:

поставьте лучший ответ

Автор ответа: iramazurk
0

Ответ:

49 см

Пошаговое объяснение:

60 * 40 * 50 = 120000 (см³) - объем аквариума прямоугольной формы

Объем куба вычисляется по формуле:

V = , где: а - ребро куба

Наименьшее возможное ребро куба (аквариума) — 49 см

49³ = 49 * 49 * 49 = 117649 см³

Похожие вопросы
Предмет: Українська мова, автор: galinkanajdenova